
1875 Campus Commons Dr. Suite 210 Reston, VA 20191
Toll Free: 877.516.2974 Main: 703.390.1230 Fax: 703.390.6456
www.idefense.com | di@idefense.com

A Comparison of Buffer Overflow Prevention
Implementations and Weaknesses

Written by: Peter Silberman and Richard Johnson

http://www.idefense.com/

Abstract

In the world of information security, buffer overflows remain the
leading cause of software vulnerabilities. In recent years, the industry
has seen an elevated rate of exploitation of these vulnerabilities due to
readily available worm generation software and mass exploitation
toolkits. This increasing exposure to buffer overflow attacks requires a
technological solution that applies a protective layer against
automated exploitation attempts.

This paper will examine two approaches to applying a generic
protection against buffer overflow attacks and critique the
effectiveness of available buffer overflow protection mechanisms on
the Linux and Microsoft Windows platforms. An analysis of each
technology will explain the methods by which a protection mechanism
has been implemented and the technology’s effectiveness in defending
against automated attacks as well as targeted attacks, which
specifically try to circumvent that specific protection method. Finally, a
matrix will be presented which will define each technology’s ability to
protect against multiple classes of buffer overflow attacks including
format strings, stack overflows and heap overflows.

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

Page 1

1 Introduction

Software vulnerabilities which result in a stack based buffer overflow are not as common
today as they once were. Unfortunately, it only takes a single known vulnerability in a
commonly used piece of software or operating system to leave an entire infrastructure
exposed. Since the release of papers detailing exploitation methods like Aleph1’s “Smashing
The Stack For Fun and Profit,”1 Mudge’s “How To Write Buffer Overflows”2 and w00w00 “On
Heap Overflows,”3 buffer overflows have been a prevalent problem in the information
security field. The past few years has seen volumes of information published on techniques
used to exploit software vulnerabilities. This research has become readily available at local
bookstores, shortening the learning curve for an attacker even further. The availability of
this information has led to the development of automated worms which can reduce the
required attack window down to a number of hours before tens of thousands of computers
are infected. In this sense, worm technology acts as a catalyst, which requires an equally
effective defense against the attacks that a computer connected to the internet is subjected
to on a daily basis.

1.1 Scope

This paper aims to explain the concepts behind buffer overflow protection software,
implementation details of some of the more popular software in use, and provide an
objective test platform which determines the effectiveness of each piece of software. The
software covered by this paper includes PaX, StackGuard, StackShield, ProPolice SSP,
Microsoft Visual Studio .NET, OverflowGuard, and StackDefender. The authors chose to omit
Exec Shield4, kNoX5, RSX6 and OpenWall Project7 because the project ideas contributed to
the formation of PaX. As a result their best features are covered in PaX and do not need to
be explained twice.

1 Smashing the stack for fun and profit (http://secinf.net/uplarticle/1/p49-14.txt), 2/19/04
2 How To write buffer overflows (http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html), 2/19/04
3 w00w00 on Heap Overflow (http://www.w00w00.org/files/articles/heaptut.txt), 4/18/2021
4 Exec Shield (http://people.redhat.com/mingo/exec-shield/), 3/29/2004
5 kNoX (http://isec.pl/projects/knox/knox.html), 3/29/2004
6 RSX (http://www.starzetz.com/software/rsx/), 3/29/2004
7 OpenWall Project (http://www.openwall.com/linux/), 3/29/2004

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www.openwall.com/linux/
http://www.starzetz.com/software/rsx/
http://isec.pl/projects/knox/knox.html
http://people.redhat.com/mingo/exec-shield/
http://www.w00w00.org/files/articles/heaptut.txt
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://secinf.net/uplarticle/1/p49-14.txt

2 Buffer Overflow Protection Technology

Buffer overflows can be addressed in a multitude of ways to protect against unwarranted
code execution. The common implementations of these protection schemes have been
separated into two categories: kernel enforced and compiler enforced protection.

2.1 Kernel Enforced Protection

Since the kernel is unaware of the internal functionality of the executable, its influence is
restricted to modifications to the environment in which the program executes. The kernel is
able to do this by modifying the layout of a process’s virtual memory address space, as well
as by applying access controls to pages of memory which prevent the execution of injected
code. According to PaX, the goal of kernel enforced buffer overflow protection is to prevent
and contain the following exploit objectives:

 Introduce/execute arbitrary code
 Execute existing code out of original program order
 Execute existing code in the original program order with arbitrary data

The two methods described below are combined to provide sufficient protection against
most remote exploit attacks.

Memory Management Unit Access Control Lists (MMU ACLs)

Non-executable (NOEXEC) protection is the most commonly used access control for memory.
A non-executable stack resides on a system where the kernel is enforcing proper “memory
semantics.” Proper memory semantics are comprised of three components outlined in the
PaX Documentation8. One component is the separation of readable and writable pages, as
well as only allowing programs that generate code at startup to have executable memory
pages. The second component is to make all available executable memory including the
stack, heap and all anonymous mappings non-executable. The third component consists of
enforcing ACL, which involves denying the conversion of executable memory to non-
executable memory and vice versa.

Address Space Layout Randomization (ASLR)

ASLR is based on the theory that exploits commonly rely on static values, such as
addresses, which are known to contain operands such as ‘call [register]’ or pointers to the
known location of a buffer on the stack. ASLR defeats these rudimentary exploit techniques
by introducing randomness into the virtual memory layout for a particular process. ASLR can
introduce varying levels of randomness during the process of loading a binary so that the
binary mapping, dynamic library linking and stack memory regions are all randomized
before the process begins executing. Randomizing the locations of the binary image, library
locations, heap, and stack causes generic exploits to fail, requiring the exploit to brute force
one or more address values and increasing the chance that an attack will be unsuccessful.

2.2 Compiler Enforced Protection
8 PaX Documentation (http://pax.grsecurity.net/docs/pax.txt), 4/18/2021

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://pax.grsecurity.net/docs/pax.txt

Compiler enforced protection mechanisms take a completely different approach to
preventing the execution of arbitrary code within a protected process. Since the compiler
has intimate knowledge of structure of the binary, modifications to the stack layout may be
made. Introduction of special values called ‘canaries’ may be inserted into arbitrary points in
memory to detect the corruption of saved control structures. The basic concept of
overflowing a buffer to modify a return address or function pointer on the stack may be
addressed by placing canary values in a location that would cause them to be overflowed
before the return address may be reached. These canary values can be checked during the
epilogue of a function, before a return to the saved pointer is made to ensure the integrity of
the process control structures. In addition, modifications to the stack layout can ensure that
a buffer overflow is unable to overwrite saved pointers by rearranging the order in which the
variables are stored on the stack. More detail on stack layout modifications can be found in
Section 3.2. Next we will take a closer look at stack canary values.

Stack Canaries

Stack canaries were first implemented by Immunix, Inc. (formerly known as WireX) in the
StackGuard GCC patches. Preserving return addresses stored on the stack is the primary
goal to prevent the redirection of code execution to an attacker controlled address space.
The addition of a special canary value before the saved return address on the stack
combined with a modification to the epilogue of a function, which checks the canary value,
is an effective deterrent against arbitrary code execution.

There are four types of canaries that have been used to date:

Random Canary – The original concept for canary values took a 32-bit pseudorandom value
generated by the /dev/random or /dev/urandom devices on a Linux operating system.

Random XOR Canary – The random canary concept was extended in StackGuard version 2 to
provide slightly more protection by performing an XOR operation on the random canary
value with the stored control data.

Null Canary – Originally introduced by der Mouse on the BUGTRAQ security mailing list, the
canary value is set to 0x00000000 which is chosen based upon the fact that most string
functions terminate on a null value and should not be able to overwrite the return address if
the buffer must contain nulls before it can reach the saved address.

Terminator Canary – The canary value is set to a combination of Null, CR, LF,and 0xFF.
These values act as string terminators in most string functions, and accounts for functions
which do not simply terminate on nulls such as gets().

The use of canaries has been observed in three Linux compiler based protections as well as
the Microsoft Visual C++ .NET compiler protections. The details of the Linux
implementations may be found in Section 5.2 and an explanation of the .NET technology can
be found in Section 6.1.

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

3 Attack Vector Test Platform
An attack vector test platform has been used in this paper to provide objective empirical
data on the effectiveness of each protection mechanism. The test platform is based on work
done by John Wilander for his paper titled “A Comparison of Publicly Available Tools for
Dynamic Buffer Overflow Prevention”9 and has been modified to compile on both Windows
and Linux platforms. The attack vectors are defined by a combination of exploitation
technique, location where the overflow occurs, and target value to overwrite. The
techniques involved require the attack to overflow all the way to the target or overflow a
pointer which redirects to the target. The locations are defined as the stack or heap/bss data
segment. The attack targets include return address, saved base pointer, function pointer,
and longjmp buffers. A complete listing of the test cases follows and will be referred to later
in the paper.

1. Buffer overflow on the stack all the way to the target:
a. Return address
b. Old base pointer
c. Function pointer as local variable
d. Function pointer as parameter
e. Longjmp buffer as local variable
f. Longjmp buffer as function parameter

2. Buffer overflow on the heap/BSS/data all the way to the target:
a. Function pointer
b. Longjmp buffer

3. Buffer overflow of a pointer on the stack then pointing at target:
a. Return address
b. Base pointer
c. Function pointer as variable
d. Function pointer as function parameter
e. Longjmp buffer as variable
f. Longjmp buffer as function parameter

4. Buffer overflow of a pointer on the heap/BSS/data and then pointing at target:
a. Return address
b. Base pointer
c. Function pointer as variable
d. Function pointer as function parameter
e. Longjmp buffer as variable
f. Longjmp buffer as function parameter

9 A Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention
(http://www.ida.liu.se/~johwi/research_publications/paper_ndss2003_john_wilander.pdf), 2/7/03

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www.ida.liu.se/~johwi/research_publications/paper_ndss2003_john_wilander.pdf

4 Linux Protection Suites

There has been much work done on the Linux kernel and the GCC compiler to implement
methods that prevent the exploitation of software vulnerabilities. This prior research has
been instrumental in the design of new protection schemes for the Microsoft Windows
operating system and various other hardened Linux projects. This section will explain the
concepts of the most robust solutions currently available for Linux to provide context. In
Section 5 an analysis of the Windows protections will be given.

4.1 Kernel Enforced Protection

We will use the PaX Project’s kernel patches as an example of the most robust kernel-based
protection software currently available. PaX offers prevention against unwarranted code
execution via memory management access controls and address space randomization,
referred to henceforth as NOEXEC and ASLR respectively. Section 4.1.1 outlines the
components of NOEXEC and Section 4.1.2 will explain the design methods behind ASLR.

4.1.1NOEXEC

The NOEXEC component of PaX aims to prevent the injection and execution of arbitrary code
in an existing process’s memory space. The NOEXEC implementation consists of three
features which ultimately apply access controls on mapped pages of memory.

The first feature of NOEXEC applies executable semantics to memory pages. Executable
semantics can be thought of as applying least privilege concepts to the MMU. The
application of these semantics to create non-executable pages on the IA-32 architecture can
take two forms, based on the paging (PAGEEXEC) and segmentation logic (SEGMEXEC) of IA-
32, and have tradeoffs between performance and usability. Once the logic required to create
non-executable pages has been merged into the kernel, the next step is to apply the new
features. This can be done by making the memory which holds the stack, heap, anonymous
memory mappings and any section not specifically marked at executable in an ELF file, non-
executable by default. Finally, the functionality of mmap() and mprotect() are modified to
prevent the conversion of the default memory states to an insecure state during execution
(MPROTECT). Each of these concepts is covered in more detail below.

PAGEEXEC

PAGEEXEC is an implementation of non-executable pages, which is derived from the paging
logic of IA-32 processors. The IA-32 family of processors lack native hardware support for
marking pages of memory non-executable. However, the implementation of a split
Translation Lookaside Buffer (TLB) in Pentium and AMD K7+ CPUs can be leveraged to
emulate non-executable page support. The purpose of the TLB is to provide a cache for
virtual to physical address translation, which speeds up instruction or data fetching within
the CPU. A split TLB actually has two separate translation buffers, one for instruction fetches
(ITLB) and one for data fetches (DTLB). The ITLB/DTLB loading is the key feature to getting
non-executable pages, as protected pages can be marked as either “non present” or
“requiring supervisor level access.” In both cases access to the pages will generate a page
fault. The page fault handler can then decide if it was an instruction fetch or data access. If it

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

is an instruction fetch, it means that there was an execution attempt in a non-executable
page, and the process can then be terminated accordingly. However, if the fault is triggered
during data access, the pages can be changed temporarily to provide user level access and
then restored to enable the fault handler for future accesses.

SEGMEXEC

SEGMEXEC is an alternate implementation of non-executable pages which is derived from
the segmentation logic of IA-32 processors. Linux runs in protected mode with paging
enabled on IA-32 processors, which means that each address translation requires a two step
process. The logical address must first be converted to a linear address from which the
correct physical address may be determined. This is usually transparent to users of Linux,
primarily because it creates identical segments for both code and data access which cover
the range of 0x00000000 – 0xffffffff and does not require translation between logical and
virtual memory addresses because they share the same value. PaX leverages the
segmentation logic to create separate address ranges for the data (non-executable) and
code segments. The 3gb of userland memory space is divided in half and each segment is
assigned one of the halves. The data segment lies in the 0x00000000 - 0x5fffffff range and
the code segment lies in the 0x60000000 – 0xbfffffff range. Since the code and data
segments are separated, accesses to the memory ranges can be monitored by the kernel
and a page fault generated if instruction fetches are initiated in the non-executable pages. 10

MPROTECT

MPROECT is a feature of PaX which aims to prevent the introduction of new executable code
to a given task’s address space by applying access controls to the functionality of mmap()
and mprotect(). The goal of the access controls is to prevent the following:

 Creation of executable anonymous mappings
 Creation of executable/writable file mappings
 Making executable/read-only file mapping writable except for performing relocations

on an ET_DYN ELF file (non-PIC shared library)
 Conversion of non-executable mapping to executable

Every memory mapping has permission attributes which are stored in the vm_flags field of
the vma structure within the Linux kernel. The four attributes which define the permissions
of a particular area of mapped memory are VM_WRITE, VM_EXEC, VM_MAYWRITE and
VM_MAYEXEC. The Linux kernel requires that VM_MAYWRITE is enabled if the VM_MAYWRITE
attribute is true, and the same also applies to the VM_EXEC and VM_MAYEXEC attributes.
Under normal operation, the Linux kernel can have a mapped area of memory with both
write and exec permissions enabled, but the PaX Project must deny this combination to
prevent the introduction of new code into executable pages. This reduces the number of
possible states for memory permissions to be one of the following11:

 VM_MAYWRITE
 VM_MAYEXEC
 VM_WRITE | VM_MAYWRITE
 VM_EXEC | VM_MAYEXEC

This essentially limits mapped memory to be either executable or writable, and ensures that
both are never assigned at the same time. While these limits may break poorly designed

10 SEGMEXEC Documentation (http://pax.grsecurity.net/docs/segmexec.txt), 2/19/04
11 MPROTECT Documentation (http://pax.grsecurity.net/docs/mprotect.txt), 2/19/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://pax.grsecurity.net/docs/mprotect.txt
http://pax.grsecurity.net/docs/segmexec.txt

software, it is an appropriate control to prevent the introduction of new code into executable
areas of memory.

4.1.2ASLR

Address Space Layout Randomization (ASLR) is the concept that attempts to render exploits
which depend on predetermined memory addresses useless by introducing a certain amount
of randomness to the layout of the virtual memory space. By randomizing the locations of
the stack, heap, loaded libraries, and executable binaries, ASLR effectively reduces the
probability that an exploit which relies on hardcoded addresses within those segments will
successfully redirect code execution to the supplied buffer. Again, we will use PaX, which is
comprised of four main components: RANDUSTACK, RANDKSTACK, RANDMMAP and
RANDEXEC as our example implementation of ASLR.

RANDUSTACK

The RANDUSTACK component of PaX is responsible for randomizing userland stack
addresses. The kernel is responsible for creating a program stack upon each execve()
system call. This is done in a two step process which involves the kernel allocating the
appropriate number of pages and populating them if necessary, and then mapping the
allocated memory pages to the process's virtual address space. Typically on x86
architectures, the Linux kernel maps the stack at the end of the userland address space and
grows downward from virtual memory address 0xbfffffff. RANDUSTACK modifies addresses in
both stages of the creation of the userland stack so that the kernel memory allocated and
the virtual address mapping within the task are modified by a random value. It’s noteworthy
that the kernel addresses may shift by up to 4 kb while the userland stack may shift as
much as 256 mb. It is also important to note that while forked processes will be handled by
RANDUSTACK, threads within a process are randomized by the RANDMMAP component of
PaX ASLR.

RANDKSTACK

The RANDKSTACK component of PaX is responsible for introducing randomness into a task's
kernel stack. Each task is assigned two pages of kernel memory which is used to handle
kernel mode operations during the lifetime of the task such as system calls, hardware
interrupts and CPU exceptions. Normally, when the Linux kernel returns to userspace after a
context switch to kernel mode during the execution of a system call or other operation, the
kernel stack pointer will be at the point of initial entry to the kernel. This offers the
advantage that the kernel stack pointer for a task may be randomized on each context
switch rather than on each execution as is the case with userspace stack randomization.
RANDKSTACK leverages this ability to randomize every system call; reasoning that every
system call is a potential attack. While the amount of randomization that PaX adds to the
kernel stack is limited to about a 128 byte shift. This should be enough to prevent the
execution remote kernel exploits while keeping the assigned address sane.

RANDMMAP

RANDMMAP is the component which handles the randomization of all file and anonymous
memory mappings. This is done in PaX by hooking the do_mmap() interface which is
responsible for mapping the memory required for assigning brk() and mmap() managed
heap space as well as executables and libraries. Note that only ET_DYN ELF executables are
handled by RANDMMAP; ET_EXEC ELF executables are handled specifically by the

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

RANDEXEC component of PaX. RANDMMAP randomizes the specified memory mappings in
two ways. The Linux kernel usually allocates heap space by beginning at the base of a task's
unmapped memory and locating the nearest chunk of unallocated space which is large
enough to supply the requested size. RANDMMAP modifies this functionality by adding a
random delta_mmap value to bits 12-27 of the base address before searching for free
memory. For executable mappings of ET_DYN binaries, the base load address is changed to
that of a standard ELF_EXEC binary, which is located at 0x08048000 before the 16 bit
delta_mmap value is added to introduce entropy.

RANDEXEC

The last major component of PaX is RANDEXEC. RANDEXEC is responsible for randomizing
the location of ET_EXEC ELF binaries. The relocation of an executable that is not originally
designed to be relocatable, raises some special concerns that are addressed by the
RANDEXEC implementation. The first step is to load the executable at the standard address,
but those pages must be marked non-executable. Next, a copy of the executable is created
at a random location in memory using the same methods outlined in RANDMMAP. Again, the
pages are mapped non-executable. However, the mirrored version may attempt to execute
code and will be handled by the page fault handler. The page fault handler will perform
some checks, including detecting if the page fault is due to an instruction fetch. It will then
redirect the flow back into the randomized mapping by modifying the userland instruction
pointer. These steps also account for hard coded addresses which are compiled into the
binary since they will be handled by a page fault handler if the non-executable page is
accessed instead of the randomly relocated image. PaX implements something called vma
mirroring which handles the specifics of how addresses are translated when page fault
handlers are in place. For brevity's sake we will not cover those details here. Further
information can be found in the PaX documentation12.

4.1.3Defeating PaX

PaX offers considerable protection against buffer overflow attempts. Much research has
been put into defeating PaX with little result. NOEXEC protections effectively prevent the
execution of code on the stack, heap, and other data segments while the randomization of
library addresses make return to libc exploitation much more difficult. However. research by
Nergal13 in 2001 has shown that there are methods which may bypass the security of PaX.
Since NOEXEC stack protection is difficult to circumvent, the attacker is forced to resolve
randomized library addresses or use the PLT to resolve the function addresses for him. This
may be done fairly simply locally, but remote exploitation may require an information leak
vulnerability such as a format string bug to recover remote memory addresses. It may also
be possible for an attacker to target a binary which is not compiled position independent.
Such binaries may not be randomly mmap()’d which results in a standard return to libc
exploitation scenario. The following results of the Attack Vector Test Platform show how well
PaX protects a system against traditional attack vectors. It should be noted that this test
was performed on a Linux 2.4 kernel with SEGMEXEC and all randomization functionality
enabled.

PaX Attack Vector Test Platform Results

A plus symbol (+) indicates that the software successfully protected against the
specified exploitation vector.

12 VMA Mirroring Documentation (http://pax.grsecurity.net/docs/vmmirror.txt), 2/19/04
13 The advanced return-into-libc exploits: PaX case study (http://www.phrack.org/phrack/58/p58-0x04), 12/28/01

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www.phrack.org/phrack/58/p58-0x04
http://pax.grsecurity.net/docs/vmmirror.txt

Buffer overflow on stack all the way to the target
+ Target: Parameter function pointer
+ Target: Parameter longjmp buffer
+ Target: Return address
+ Target: Old base pointer
+ Target: Function pointer
+ Target: Longjmp buffer

Buffer overflow on heap/BSS all the way to the target
+ Target: Function pointer
+ Target: Longjmp buffer

Buffer overflow of pointer on stack and then pointing to target
+ Target: Parameter function pointer
+ Target: Parameter longjmp buffer
+ Target: Return address
+ Target: Old base pointer
+ Target: Function pointer
+ Target: Longjmp buffer

Buffer overflow of pointer on heap/BSS and then pointing to target
+ Target: Return address
+ Target: Old base pointer
+ Target: Function pointer
+ Target: Longjmp buffer

4.2 Compiler Enforced Protection

The compiler based approach to preventing the exploitation of buffer overflow vulnerabilities
is primarily based on ensuring the integrity of control data stored on the stack. There have
been three major implementations of compiler based protections which are all based on
modifications to the stack layout and/or the use of canaries. This section will take a deeper
look at the specific differences in the implementations between the StackGuard, StackShield
and Stack-Smashing Protector (previously known as ProPolice) buffer overflow protection
mechanisms.

4.2.1StackGuard

StackGuard is a GCC patch created by Immunix, Inc. which has provided the foundation for
other compiler based protection technologies and pioneered the use of stack canaries as a
method for preventing the overwriting of saved control values. The StackGuard patch adds
code at the RTL level to the function_prologue and function_epilogue functions within GCC to
provide the generation and validation of the stack canary. StackGuard originally modified
the function_prologue to make GCC push a random canary directly before the return
address. The most recent version has been modified to protect the saved registers and
frame pointer in addition to the return address and implements terminator canary values.
The placement has been modified from its original location right before the saved return
address on the stack to be placed in a location which is harder to overwrite. The decision of
where to place the canary is architecture specific. On x86 architectures, the saved frame
pointer points to a location where alignment padding has been generated by GCC and
provides a good address to store the canary. The stored canary will be checked by the

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

function_epilogue before a function may return. If the stored canary does not match the
canary on the stack, StackGuard will exit the program and record an error in the system log.

Defeating StackGuard

While StackGuard may effectively stop standard stack overflows which overwrite a saved
return address, there are other attack vectors which may easily bypass the canary check.
Since the day after StackGuard was originally released, methods for bypassing StackGuard
protected binaries have been publicly discussed.14 Tim Newsham explored the possibility of
bypassing StackGuard by overwriting local variables which could then be used to
compromise the protection. Additional research has shown that overwriting function pointers
and frame pointers stored on the stack can also lead to compromise15. Protection against
non-stack based attack vectors such as heap overflows is also beyond the scope of
StackGuard. The reader may view the results of the Attack Vector Test Platform below to
better understand the protection coverage provided by StackGuard.

StackGuard Attack Vector Test Platform Results

A plus symbol (+) indicates that the software successfully protected against the
specified exploitation vector.

Buffer overflow on stack all the way to the target
- Target: Parameter function pointer
- Target: Parameter longjmp buffer
+ Target: Return address
+ Target: Old base pointer
- Target: Function pointer
- Target: Longjmp buffer

Buffer overflow on heap/BSS all the way to the target
- Target: Function pointer
- Target: Longjmp buffer

Buffer overflow of pointer on stack and then pointing to target
- Target: Parameter function pointer
- Target: Parameter longjmp buffer
- Target: Return address
+ Target: Old base pointer
- Target: Function pointer
- Target: Longjmp buffer

Buffer overflow of pointer on heap/BSS and then pointing to target
- Target: Return address
+ Target: Old base pointer
- Target: Function pointer
- Target: Longjmp buffer

ProPolice Stack-Smashing Protection (SSP)
Unlike other compiler methods, which just place canaries in front or behind the return
address, SSP proactively monitors stack changes. SSP re-arranges argument locations,
return addresses, previous frame pointers and local variables. SSP has come up with the

14 Re: StackGuard (http://online.securityfocus.com/archive/1/8260), 12/19/97
15 Different tricks to bypass StackShield and StackGuard protection
(http://www2.corest.com/files/files/11/StackguardPaper.pdf), 6/3/02

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www2.corest.com/files/files/11/StackguardPaper.pdf
http://online.securityfocus.com/archive/1/8260

following “safe stack model” that helps decide where variables, arguments and the canaries
should be placed on the stack:

As the reader can see from the figure above, the array and local variables are all below the
return address. If an overflow were to occur in the array, nothing important would be
overwritten and the overflow would be useless. This also helps with pointers. Take a look at
a vulnerable code segment (provided by SSP documentation):

Without our model, an overflow in buf could overwrite the function pointers. However, SSP
will change this code to:

Here the reader will see that by following the SSP safe stack diagram, the passed function
pointer is put in a register if possible. If there is no register available, SSP puts the function
pointer in a local variable, making it safe. The re-arrangement will, in the case of an
overflow, overwrite nothing important.16

Defeating ProPolice SSP

16 Stack Protection Method (http://www.trl.ibm.com/projects/security/ssp/node4.html), 2/19/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www.trl.ibm.com/projects/security/ssp/node4.html

ProPolice has proved to offer much better protection against stack overflows than the other
compiler patches, yet inherent design flaws still leave certain attack vectors exposed.
ProPolice does not protect arrays with less than eight elements. An overflow of a small buffer
will go unchallenged and may redirect the return address to shellcode stored elsewhere in
memory. An additional design limitation may leave members of structures unprotected as
well since the reordering of variables within the structure is not possible. Standard attacks
which leverage a pointer overwrite to control arbitrary memory locations may be used if the
pointer is contained within a structure. Again, the protecting the heap is not within the scope
of the ProPolice software so it is not expected that those attacks will be defeated. An
overview of the protection provided by ProPolice is presented below.

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

ProPolice SSP Attack Vector Test Platform Results

A plus symbol (+) indicates that the software successfully protected against the
specified exploitation vector.

Buffer overflow on stack all the way to the target
+ Target: Parameter function pointer
- Target: Parameter longjmp buffer
+ Target: Return address
+ Target: Old base pointer
+ Target: Function pointer
+ Target: Longjmp buffer

Buffer overflow on heap/BSS all the way to the target
- Target: Function pointer
- Target: Longjmp buffer

Buffer overflow of pointer on stack and then pointing to target
+ Target: Parameter function pointer
+ Target: Parameter longjmp buffer
+ Target: Return address
+ Target: Old base pointer
+ Target: Function pointer
+ Target: Longjmp buffer

Buffer overflow of pointer on heap/BSS and then pointing to target
- Target: Return address
+ Target: Old base pointer
- Target: Function pointer
- Target: Longjmp buffer

4.2.2StackShield

While development on StackShield has appeared to cease, we will cover the basic concepts
here as an additional approach to compiler based protection. StackShield is similar to the
other compiler-based protections, but also has some unique features. The first feature is the
Global Return Stack, which acts as a specialized stack for return addresses. Every time a
function is called, the return address is copied to the Global Ret Stack. When a function is
ready to return, the return address is copied from the Global Ret Stack to the applications
stack, overwriting any possible compromise. Since this method will not detect attacks, the
Ret Range Check feature may be used instead, which copies the return address to an un-
writeable area rather than pushing a canary on the stack during the function_proglogue.
When function_epilogue is reached, StackShield will check the stored return address. If an
inconsistency is found, StackShield will exit the program, and allow for the detection and
logging of overflow attempts. StackShield also offers protection of function pointers. This
method is simple, but breaks programs that allocate memory dynamically. StackShield’s
protection of function pointers only allows function pointers to point to the .text section
since any injected code would have to be in the .data section. This method completely
denies attempts to run malicious code that is unable to overwrite the .text segment.

Defeating StackShield

Methods for defeating StackShield are similar to those used to bypass StackGuard
protection. The use of the Global Return Stack does provide some additional protection
against pointer overwrites that StackGuard does not offer. Pointer overflows which later

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

modify the return address directly on the stack will fail since the modified value is
overwritten when the saved return is restored from the Global Return Stack. Other than this
one exception, pointer overwrites may still be used to execute arbitrary code by controlling
saved function pointers or overwriting GOT entries. The similarities in protection coverage to
StackGuard can be seen in the results of the Attack Vector Test Platform.

StackShield Attack Vector Test Platform Results

A plus symbol (+) indicates that the software successfully protected against the
specified exploitation vector.

Buffer overflow on stack all the way to the target
- Target: Parameter function pointer
- Target: Parameter longjmp buffer
+ Target: Return address
+ Target: Old base pointer
- Target: Function pointer
- Target: Longjmp buffer

Buffer overflow on heap/BSS all the way to the target
- Target: Function pointer
- Target: Longjmp buffer

Buffer overflow of pointer on stack and then pointing to target
- Target: Parameter function pointer
- Target: Parameter longjmp buffer
+ Target: Return address
+ Target: Old base pointer
- Target: Function pointer
- Target: Longjmp buffer

Buffer overflow of pointer on heap/BSS and then pointing to target
+ Target: Return address
+ Target: Old base pointer
- Target: Function pointer
- Target: Longjmp buffer

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

5 Windows 2003 Stack Protection

5.1 Windows 2003 Stack Protection

5.1.1Compiler-based Protection

Microsoft began looking for ways to ensure that their products were secure out of the box.
This decision was followed by the release of multiple vulnerabilities in the summer of 2003.
Microsoft’s solution to making their products secure out of the box, is very similar to Crispin
Cowan’s StackGuard covered earlier in this paper. In the new .NET compilers, Microsoft
provides the /GS command line switch. When enabling this command line switch, a security
cookie (canary), is placed in front of the return address and saved ebp. By default, Windows
2003 is compiled with it.

5.1.2How The Protection Works

When a program that is compiled with the /GS switch, returns from a function. The canary
authentication mechanism loads the canary that was on the stack into ecx and compares it
to the original canary, that is stored in the .data section of the program. If these canaries
match each other the program continues. However if these canaries do not match, the
program checks to see if a security handler is specified in the .data section of the program.
If a security handler is specified the program calls that security handler. However if no
security handler is specified then the UnHandledExceptionFilter is set to 0x00000000 and
called. The UnHandledExceptionFilter will load faultrep.dll and call an exported function
named ReportFault.

5.1.3Compromising The Protection

There are many ways outlined by researchers namely David Litchfield on how to bypass
Microsoft’s protection. This paper will outline briefly how it can be done.
If a local buffer is overflowed, the attacker may try to overwrite the
EXCEPTION_REGISTRATION structure and within that overwrite the exception handler. The
EXCEPTION_REGISTRATION structure looks like:

EXCEPTION_REGISTRATION
Pointer to next structure on the stack
Pointer to the exception handler

 Microsoft recognized that the exception handler was being abused in attacks. Microsoft
came up with an outline to prevent this from happening. All registered exception handlers
are stored in the program’s Load Config Directory. If the exception handler is not in the Load
Config Directory array the exception handler is not called. The exception handler is also not
called if the handler points to the stack. This is where Microsoft’s defense stops against
abusing the exception handler stops. Microsoft allows exception handlers that point outside
the modules range to be called and Microsoft also allows exception handlers that point to
the heap to be executed.

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

David Litchfield outlines two reliable avenues for attack which will be discussed. The first
attack method is to point the exception handler to a registered exception handler and abuse
the registered exception handler. The second method is to point the exception handler to a
code block outside the address range that will when executed point back into the attacker’s
code.

After the attacker has compromised the exception handler they only need to cause an
exception. This can be done by either causing a memory access violation by forcing the
program to read or write to an address that does not exist. Or to write passed the end of the
stack causing an exception.

There are more less reliable attack avenues discussed by David Litchfield. However this
subject has been talked about before at conferences and in multiple books therefore this
ends our discussion of Windows 2003 stack protection and to find more information we
supply you with links.

- http://www.nextgenss.com/papers/defeating-w2k3-stack-protection.pdf
- Shellcoders Handbook, pg 161-167

5.1.4Bypass Windows 2003 Stack Protection
Windows 2003 Stack Protection Attack Vector Test Platform Results

A plus symbol (+) indicates that the software successfully protected against the specified
exploitation vector.

Buffer overflow on stack all the way to the target
+ Target: Parameter function pointer
+ Target: Return address
+ Target: Function pointer

Buffer overflow of pointer on stack and then pointing to target
+ Target: Parameter function pointer
+ Target: Return address
+ Target: Function pointer

5.2 NGSEC StackDefender 1.10

5.2.1StackDefender Overview

StackDefender offers driver based stack protection. Previously in the paper this method was
known as Kernel Enforced protection. StackDefender is able to offer protection against
malicious code execution because StackDefender monitors specific API calls and checks
these API calls to make sure they are not made from the stack. StackDefender installs a
driver called StackDefender.sys that implements a hooking solution known as “NT System-
Call Hooking”17 18 (see brief Description of Kernel System-Call Hooking). StackDefender
hooks both ZwCreateFile and ZwOpenFile by replacing the KeServiceDescriptorTable
address that point them. By hooking these system functions, StackDefender can see all files
opened and created. When either ZwCreateFile or ZwOpenFile are called, the driver looks to
see if the file executed is one of the following: msvcrt.dll, ntdll.dll,or kernel32.dll. If it is one
of these files, the driver replaces the last six characters with NG.fer, this will then load SD’s
17 Mark Russinovich and Bryce Cogswell, "Windows NT System-Call Hooking", Dr. Dobb's Journal January 1997
18 Windows NT System Service Table Hooking (http://www.wiretapped.net/~fyre/sst.html), 5/11/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www.wiretapped.net/~fyre/sst.html
http://www.nextgenss.com/papers/defeating-w2k3-stack-protection.pdf

own version of these DLL’s. The DLL’s that StackDefender loads have all been rebased,
using Microsoft’s ReBaseImage19 API.

5.2.2Brief Description of Kernel System-Call Hooking

Before one can understand how Kernel System-Call Hooking works they must understand
how a kernel system-call is made. The system call is made through the int 2e handler which
is internally called KiSystemService. Before the int 2e instruction is executed, certain
registers must be filled in. The eax register must contain the service id number, and edx
must contain a frame pointer to the userland stack where the parameters are stored, so that
the kernel can copy the parameters off the userland stack and onto the kernel stack. Once
the int 2e instruction is executed, the processor switches to kernel mode and executes the
int 2e handler. The int 2e handler indexes the ServiceTableBase member of the structure
KeServiceDescriptorTable. The structure itself looks like:

 typedef struct ServiceDescriptorTable {
PVOID ServiceTableBase;
PVOID ServiceCounterTable(0);
unsigned int NumberOfServices;
PVOID ParamTableBase;

}

Here is an example of a Kernel System-Call:

__asm
{

mov eax, 0x64 //System Service ID (Function Number To Call)
lea edx, [esp+0x04] //Pointer to parameters on stack
int 2eh //switch to kernel mode and execute handler

}

This gets translated into the following, a pseudo code example will show how the kernel calls
the system call:

call KeServiceDescriptorTable->ServiceTableBase[function_id]

The hook itself is implemented by a driver, simply overwriting the pointer at
ServiceTableBase + function_id to point to the driver’s version of that function. The driver
can then call the original function when it is done.

5.2.3 Individual Analysis of files

5.2.4StackDefender.sys

StackDefender.sys makes up half of the NGSEC StackDefender protection suite.
StackDefender.sys is the component that performs the system-call hooking and file
redirection.
StackDefender.sys has two phases. The first phase is to setup a system-call hooks on both
ZwCreateFile and ZwOpenFile. These hooks force any file opened or created to go through
StackDefender’s driver.
19 MSDN ReBaseImage (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/
rebaseimage.asp), 5/11/2004

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/rebaseimage.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/rebaseimage.asp

StackDefender’s second phase occurs when files are opened/created. StackDefender looks
at the file being created/opened if the file is either msvcrt.dll, ntdll.dll or kernel32.dll.
StackDefender will overwrite the last 6 bytes of the filename with NG.fer this turns the file
name into, msvcNG.fer, ntdNG.fer and kernelNG.fer. The *NG.fer files are put on the system
during the installation process, so they do exist and are successfully loaded into the process
space.

5.2.5stackdefender_service.exe

stackdefender_service.exe, installs and creates the service on the system the user wants to
protect. The service executable registers StackDefender.sys as the service’s driver, so that
the driver can modify the KeServiceDescriptorTable. Finally, the executable interacts with
the Service Control Manager (SCM) to stop start and disable the service as the user wants.

5.2.6Background NG.fer files

During the installation of StackDefender, StackDefender will place three NG.fer files on the
user’s system. Two of the three NG.fer files that are installed by StackDefender are replicas
of the DLL’s they replace. During the installation processes StackDefender will copy
msvcrt.dll, and ntdll.dll into files called msvcNG.fer and ntdNG.fer. These two new files are
then rebased (see section on What ReBasing Is). The rebase process tries to give the DLL’s a
random image base, using an algorithm designed to come up with random numbers.

5.2.7What ReBasing Is

When a DLL is loaded into the memory of a process via LoadLibrary, or other similar API
function, the system will load the DLL at the preferred address range, which is known as the
image base specified in the PE Optional Header section. If the memory is taken up, and the
DLL has .reloc information the DLL is reloaded into a different address space. However, if the
DLL is a system DLL (e.g. ntdll.dll), these DLL’s are not relocatable on the fly. Thus if the
preferred load address is taken for a system DLL, the application will not be loaded.

NGSEC StackDefender, is able to load the DLL into a new memory region, by creating a copy
of the DLL and rebasing the copy of that system DLL. NGSEC StackDefender uses an API
known as ReBaseImage20 documented in the MSDN library to rebase the three DLL’s it
replaces.

5.2.8kernelNG.fer

The kernelNG.fer is different from the other two NG.fer files because it is not just a copy of
the DLL from the users system that was rebased. StackDefender‘s first phase in modifying
kernelNG.fer, is to modify the relocation section (.reloc). StackDefender changes .reloc
section flags from 42000040 (Readable + Discardable + Initialized Data) to E2000060
(Executable + Writable + Readable). StackDefender then hooks functions that the NGSEC
believes will be used in shellcode. NGSEC believes that by watching any functions that will

20 ReBaseImage (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/rebaseimage.asp),
5/12/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/rebaseimage.asp

be used by shellcode, they can prevent the success of shellcode. The following functions are
hooked using a method called “Export Address Table Relocation”:

 WinExec
 CreateProcessA
 CreateProcessW
 CreateThread
 CreateRemoteThread
 GetProcAddress
 LoadModule
 LoadLibraryExA
 LoadLibraryExW
 OpenFile
 CreateFileA
 CreateFileW
 _lopen
 _lcreat
 CopyFileA
 CopyFileW
 CopyFileExA
 CopyFileExW
 MoveFileA
 MoveFileExW
 MoveFileWithProgressA
 MoveFileWithProgressW
 DeleteFileA
 LockFile
 GetModuleHandleA
 VirtualProtect
 OpenProcess
 GetModuleHandleW

This method of hooking is very different from the system-call hooking method that
StackDefender.sys implements. Instead this implementation modifies the Export Address
Table (EAT) so that the hooked function’s EAT entries point into the .reloc section where the
new function’s handling code is contained. The EAT is a structure which contains the entry
points to API’s that are contained in the DLL. The code put in the .reloc section is the same
for each function. The code will load proxydll.dll and then call a function exported in
proxydll.dll this exported function’s name is StackDefender. Proxydll.dll will decide whether
or not the application has been compromised. Read the next section about proxydll.dll to
see how it is done.

5.2.9proxydll.dll

Proxydll.dll is the other half of the overflow protection suite that NGSEC offers. Proxydll.dll
plays a pivotal role in the detection of malicious code execution. KernelNG.fer hooks certain
API functions that NGSEC believes will be used in the average shellcode (such as
CreateProcessA or LoadLibrary). When a program calls one of these hooked functions, the
function loads and calls proxydll.dll. Proxydll.dll exports one function which is called
StackDefender. StackDefender takes four parameters. All four of these parameters are
integers. The paper will refer to them as arg1, arg2, arg3,and arg4. These arguments are as
follows, arg1 is [esp + 0x0C], arg2 address from where API is called, arg3 is single integer

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

and arg4 is the stack address of a given parameter that was fed into that specific API. The
key parameters that the reader should focus on are arg1 and arg2. These two parameters
are how StackDefender decides if the program has been compromised. What occurs after
StackDefender has gotten these arguments is significant. StackDefender will call a new
function that takes arg4 as a parameter. StackDefender will go to the address of arg4
(where the parameter was originally from), there StackDefender will search the stack for
strings that commonly exist in shellcode string tables. The list of strings are as follows
(quotes are put around so the reader can see the exact string format):

“cmd.exe”
“net “
“LoadLibrary”
“LoadModule”
“CreateProcess”
“WinExec”
“CreateThread”
“GetModuleHandle”
“OpenProcess”
“OpenThread”
“CreatePipe”
“bind”
“connect”
“wsock32”
“wsock32” (Unicode)
“cmd.exe” (Unicode)
“net “ (Unicode)

String tables are used in basic shellcode. The reason being that a lot of buffer overflows are
the result of the misuse of string manipulation calls. If a string function such as strcpy or
strcat receives a NULL (00), the string function will terminate the string at the NULL and
might not reach the attackers shellcode. To prevent this from happening, DilDog came up
with an ingenuous idea. He decided to create something called a string table. The string
table will store all the shellcode’s strings. The string table will then be xor with a number to
create a string table that has no NULLs (00). This method requires the attacker to add a little
code to the front of their shellcode a couple commands that will loop through the xor’d
string table and un-xor putting the strings on the stack so that the shellcode can use them.
This process is discussed in detail by DilDog of Cult of the Dead Cow21. What StackDefender
has done is essentially decided to search the stack for certain strings that are commonly in
string tables. However in looking at the program it does not exit if a string is found on the
stack. It continues to the next phase.

The next phase in the detection process of malicious code execution is checking where the
functions were called from. NGSEC designed an algorithm that helps detect if a program was
compromised. After the checking for the existence of the string table, StackDefender then
checks where the API call originated from. StackDefender does this by calling VirtualQuery22

on arg1 and arg2. Arg1 is the stack address 0x0C from the esp, and arg2 is the address from
where the API is called. If arg1’s page allocation base is equal to arg2’s page allocation
base, then the function call is coming from the stack. The page allocation base can be
determined by looking at the MEMORY_BASIC_INFORMATION23 structure that is passed into
21 The Tao Of Windows Buffer Overflow (http://www.cultdeadcow.com/cDc_files/cDc-351/index.html), 5/14/04
22 VirtualQuery (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/virtualquery.asp),
5/14/04
23 MEMORY_BASIC_INFORMATION (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/
memory_basic_information_str.asp), 5/14/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/memory_basic_information_str.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/memory_basic_information_str.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/virtualquery.asp
http://www.cultdeadcow.com/cDc_files/cDc-351/index.html

VirtualQuery. This tells the program that the calls are on the stack. Therefore StackDefender
marks the program as exploited and exits it. The second check StackDefender performs
before marking the program safe, is to check if the callers address space is writeable. If the
API call is made from an executable, the executables image has been VirtualProtected24 so
that the write flags are off. StackDefender is able to check this by calling IsBadWritePtr25. If
IsBatWritePtr returns zero, it means that the calling address is writeable and StackDefender
will mark it as an application that has been overflowed, and exit accordingly. If all these
checks pass, StackDefender will let the application execute normally without much cost to
system resources and speed.

5.2.10 Defeating StackDefender

While StackDefender in the standard Attack Vector Test Platform preformed the best out of
third party protection suites. It is an illusion to think StackDefender 1.10 is the best. The
reason StackDefender 1.10 did so well in our tests is that the Attack Vector Test Platform
uses standard shellcode that any attacker would use (the shellcode used is taken from Matt
Millers paper on win32 shellcode26). However if an attacker knew the system were protected
with StackDefender 1.10 the attacker could simply write their own GetProcAddress and
LoadLibrary functions that do not call the hooked API’s. The attacker could then call
ZwAllocateVirtualMemory, memcpy, ZwProtectVirtualMemory to allocate memory write
shellcode to the memory and then protect the memory so that StackDefender does not
know the memory was at one point writable.

However simplistic this protection scheme is, the protection scheme none the less proved to
offer the best protection for third party applications. Below are the Attack Vector Test
Platform results to help the reader better understand how well this application protects third
party programs.

StackDefender 1.10 Attack Vector Test Platform Results

A plus symbol (+) indicates that the software successfully protected against the
specified exploitation vector.

Buffer overflow on stack all the way to the target
+ Target: Parameter function pointer
+ Target: Return address
+ Target: Function pointer

Buffer overflow of pointer on stack and then pointing to target
+ Target: Parameter function pointer
+ Target: Return address
+ Target: Function pointer

5.3 OverflowGuard

24 VIrtualProtect (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/virtualprotect.asp),
5/14/04
25 IsBadWritePtr (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/isbadwriteptr.asp),
5/14/04
26 Win32-Shellcode (http://www.hick.org/code/skape/papers/win32-shellcode.pdf), 7/6/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/isbadwriteptr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/virtualprotect.asp

5.3.1OverflowGuard Overview

OverflowGuard is a protection suite that claims to offer “strong Unix style buffer overflow
protection for windows.” OverflowGuard is a driver based memory protection suite. This
protection method is known as Kernel Enforced. OverflowGuard is based on the PaX Project27

document, and attempts to offer similar PaX like protection to windows users.
OverflowGuard is able to offer this kind of protection by performing a number of kernel level
operations before the user ever executes a program. OverflowGuard modifies the Interrupt
Descriptor Table (see Interrupt Descriptor Table (IDT) and Other Terms for more
information), to point to its own handlers for certain exceptions. OverflowGuard then causes
pages faults by setting the bit 1 or 2 of the Page Table Entry to zero. This marks the page as
read-only or supervisor, and any service writing/accessing the page will fault. These faults
will then execute OverflowGuard’s handlers and allow OverflowGuard to examine the
instruction and determine if the program has been compromised or not.

5.3.2 Interrupt Descriptor Table (IDT) and Other Terms

5.3.3 IDT Description

An IDT exists on most Pentium processors and on all x86 systems . This table is used by
both the processor and operating system (OS). The processor/OS will look up the IDT table
and each exception or error is related to a number. That number is used in the IDT to index
the proper handler. For example, if the user executes a program that tires to read memory
from an address that does not exist, the OS will index the IDT at 14 (0x0e). This index is
where the page fault handler is located. The handler is called and intern handles the
exception. When the handler is called the interrupt pushes the old EIP as well as the error
code of the fault onto the stack. This is done before switching into the kernel mode and
gives the page handler more information about the fault.

When an instruction accesses memory the process has to convert that virtual memory (the
memory that the instruction accessed) e.g. 0x77FFDD00 to physical memory. This is done
by looking up the Page Directory Entry (PDE) the PDE is an array of pointers to the Page
Table Entry (PTE). When an application tries to write to the page referenced by the PTE with
the privileges of a service or regular application, the application will page fault, if the page
pointed to by the PTE has supervisor permissions set. This page fault will by handled by
OverflowGuard’s page fault handler.

5.3.4Control Registers (cr)/ Debug Registers (dr)

When an application has ring0 which is the highest level an application can get. That
application can access/modify certain registers that aren’t available to applications in
ring1+. These registers are as follows:

 cr0 – Contains system control flags, operating modes and state of the processor
 cr1 – Reserved
 cr2 – Contains the page fault linear address (where the page fault occurred).
 cr3 – Contains physical address of the base of the Page Directory Entry (PDE) table.
 cr4 – Contains a group of flags that enable architectural extensions, and indicate

operating system or executive support for specific processor capabilities.
 dr4 & dr5 – reserved, previous processors alias these registers to debug registers dr6

and dr7 respectively.
27 PaX Project (http://pax.grsecurity.net), 5/19/2004

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://pax.grsecurity.net/

 dr6 – reports the conditions that were in effect when a debug exception occurred.
 dr7 – contains the type of breakpoint that was hit

5.3.5PaX/OverflowGuard Comparison
OverflowGuard is heavily based on PaX page protection. PaX page protection is thoroughly
documented on PaX’s website28. PaX outlines how to prevent compromise of a system by
marking the system’s heap/stack/and other anonymous memory pages as either Supervisor
or non-present. These flags effectively mark the pages as non-executable because code will
not be able to write or read from these pages. Whenever an instruction execution or data
access occurs on a page that is in supervisor mode or not present, it causes a fault. Next a
simple compare is done, if the old EIP is equal to where the fault occurred it was an
instruction execution on a page that should not be executable. If the EIP is not equal to
where the fault occurred it is a data access, this routine will be referred to as execution
verification. If it is a data access PaX set the PTE to user mode, then manually perform the
memory walk logic and load the address the application requested into the DTLB which is
the Data Translation Lookaside Buffer. PaX then resets permissions on the page and returns
to the application. The application can then access the Data Translation Lookaside Buffer
(the DTLB contains all data access cache where as the TLB a.k.a. ITLB contains all instruction
fetch caches) which contains the address and not the page. Next time a data access occurs
a walk is done to the PTE which has supervisor permissions set and PaX will perform this
operation over again.

OverflowGuard has a different take on Pax Page protection. Instead of marking all pages
supervisor, OverflowGuard initially marks them all as read-only. This is done to cut down on
faults occurring, and saves overhead. For example if OverflowGuard marked all the pages as
supervisor then any time an instruction situated in the image base’s page which is suppose
to execute code would page fault, and this would slow the system. Instead OverflowGuard
will mark all pages as read-only any page that has a fault occur and is read-only will be
modified and marked as supervisor mode. This effectively marks the heap and stacks as
supervisor and leaves the executable images as read only. The detection and data access
are basically the same as PaX.

5.3.6 Individual Analysis of Files

5.3.7OGCenter.exe & OGConfig.exe
These are two files that OverflowGuard (OG) installs on the users system. The files act as a
front end for configuring OG and for receiving notifications on overflow attempts.
OGCenter.exe sits in the user’s system tray and pops up when clicked on or if there was an
overflow attempt. OGConfig.exe is executed through OGCenter.exe and offers the users all
configuration options, like “Monitor Stack Only”. OGConfig.exe also allows the user to
perform tests such as stack overflow or heap overflow.

5.3.8OGRebase.exe
As mentioned in previous sections, OverflowGuard (OG) uses rebases system files as an
added protection method. However by default OG does not rebase system files. The user
must enter the %windir%\system32\ and execute OGRebase. OGRebase takes in no
arguments and performs all the rebasing. OGRebase does not use the ReBaseImage API
mentioned in the previous section. Instead OG reads the PE Header and modifies the image
28 PaX Project (http://pax.grsecurity.net), 7/6/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://pax.grsecurity.net/

base field in the Optional PE Header section. This method has many draw backs. First it
appears that the OGRebase.exe, copies shell32.dll, kernel32.dll, ntdll.dll and msvcrt.dll into
a different name. OGRebase.exe then manually rebases these DLLs. However, even on
reboot the rebase does not affect the actual files and it is not certain if this tool does
anything.

5.3.9OverflowGuard.sys
OverflowGuard.sys is the meat and potatoes of this protection suite. OverflowGuard.sys is
what offers the user the Unix like buffer overflow protection. This driver is what setups and
enforces the PaX documented outline.

5.3.10 Setup Phase
The driver’s first phase is to overwrite the Interrupt Descriptor Table’s (IDT) handlers with its
own handler. OverflowGuard does this by calling a function designed specifically for this
operation. This function first calls sidt which is used to store the IDT. The IDT is stored in a
local variable next the base of the IDT is added to the interrupt OverflowGuard wants to
hook, in this case 0x0e and 0x01, then the handler number is multiplied by 8 and the base
gets added to that to get the specific handlers address.

The math is as follows:

idt_handler = [base_of_idt + interrupt_id * 8]

OverflowGuard then converts the IDT handler to a physical memory address. This is done so
that OverflowGuard can find the page that the IDT handler resides on. After OverflowGuard
has the page that the interrupt handler is located on, OverflowGuard will set that page to
supervisor mode. This is done to prevent malicious applications from overwriting
OverflowGuard’s interrupt handlers with their own.
Next OverflowGuard flushes any reference to the old interrupt handler by executing the
invlpg (Invalidate Translation Lookaside Buffer) instruction. Finally the overwrite occurs, this
is the most complicate operation of this phase. This is because the IDT entry is actually two
long integers.

The entry looks like:

31 – 16 1
5

14-
13

12-8 7-5 4-0

Offset P DPL 0 D 1 1 0 0 0 0 Reserved

31 – 16 15-0
Segment Selector Offset

To successfully hook the IDT OverflowGuard must overwrite the offset in both integers. The
31-16 bit offset must be the high word of the new interrupt handler address. The 15-0 must
be the low word of the new interrupt address. This procedure is repeated twice once for
each interrupt OverflowGuard overwrites.

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

Next OverflowGuard checks to see if the user has enabled ret-libc protection. If the user has
indeed selected ret-libc protection, OverflowGuard will then setup four system-call hooks,
which were explained in the previous section. The following functions are hooked:

 NtCreateSection
 NtCreateFile
 NtOpenFile
 NtProtectVirtualMemory

How OverflowGuard attempts to protect users will be explained later in this document.

5.3.11 Setting Memory Permissions

For OverflowGuard to be effective as a memory protection suite it must prevent the
execution of malicious code. To do this OverflowGuard has to modify memory permissions,
to cause a page fault so that OverflowGuard’s page fault handler can be called.
OverflowGuard’s solution to setting the page permissions is relatively simple, OverflowGuard
walks the PDE and every PTE is set to read-only. OverflowGuard also checks to make sure
that the Global Page flag is not set. If it is set in the cr4 register OverflowGuard clears it. The
Global Page flag allows frequently used memory pages to be shared globally and when the
TLB is flushed the Global Pages are not, this effectively would bypass OverflowGuard and
therefore is very necessary for OverflowGuard to success in protecting the user.

5.3.12 Catching New Processes
OverflowGuard offers limited protection in that it does not protect 3rd party applications.
OverflowGuard is able to monitor new applications being executed by calling
PsSetCreateThreadNotifyRoutineError: Reference source not found. When OverflowGuard’s
callback routine is called OverflowGuard will check the Create flag specified in the callback
routine’s parameters. If this flag is set to one then the thread is being created however if
this flag is set to zero the thread is being closed (deleted). OverflowGuard handles both
cases, first if the thread is being created OverflowGuard calls a function searches a linked
list created by OverflowGuard that takes the thread ID as a parameter. This function’s linked
list routine looks up a table. The look up algorithm goes as follows:

Index_val = thread_id & 0x0FFF

The table looks something like this (we are calling it ProcInfo):

struct ProcInfo
{
..
..
/*0x0C*/ int ProtectStackValOption;
/*0x10*/ *TEB
/*0x1C*/ int ThreadID;
/*0x18*/ struct HashTable * pNext;
/*0x20*/ int ProcessID;
/*0x2C*/ *EPROCESS;
/*0x34*/ int ExitStatus;
/*0x124*/ char ProcessName[]
} //Total Size is 0x144
© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

The linked list function indexes an array that we’ll call ProcArray, this array is indexed at
index_val * 4, in pseudo code this looks like:

ProcArray[hash_val * 4]

If there is a value at the index then, OverflowGuard compares the thread ID at that index to
the thread ID passed into the hash function, if the resulting compare is successful, and it is
found that the thread is already in ProcInfo, then OverflowGuard returns a non-zero value.
However if this index returns NULL, then OverflowGuard’s linked list function returns zero.

It should be noted that the structure above is believed to be correct but, it is missing some
member variables. Also this structure is used throughout the program as a way to store
information about each process.
If the thread ID is found in the ProcInfo table’s structures then OverflowGuard returns from
its notify routine. Otherwise OverflowGuard continues, and calls
PsLookupProcessByProcessId29 which takes in a process ID and a pointer to the EPROCESS
structure. OverflowGuard next indexes the EPROCESS’s ImageFileName member located at
offset 0x1fc. OverflowGuard compares the ImageFileName with a list of processes it
protects. If this process is found, OverflowGuard will continue to fill out a new ProcInfo entry
and point the pNext to equal the new structure.

However if the Creation flag is zero then the thread is being closed. OverflowGuard simply
walks the linked list and removes any entry with the thread ID equal to the thread ID being
closed.

5.3.13 Ret-Libc Protection
OverflowGuard claims to offer ret-libc protection. Ret-libc stands for return-into-libc which
was discussed prominently by Solar Designer30. The exploit demonstrated how to bypass
non-executable stacks. This was done by overflowing the stack and instead of overwriting
the return address to point to the attacker’s shellcode, the return address would point to a
libc function most likely system. Below the return address the attacker would place the
parameter, usually a pointer to /bin/sh. Ret-libc exploits are not all that common on win32
platforms, they have not be explored in great detail. The Ins1der posted a ret-libc exploit for
the RPC DCOM vulnerability found by LSD. This exploit as of 6/7/04 bypasses both
OverflowGuard and StackDefender 1 and 2.

OverflowGuard attempts to protect against ret-libc exploits by hooking the functions
previously mentioned in the Setup Phase 5.3.10. When one of the hooked functions is called
OverflowGuard will first call KeGetCurrentThread31 which returns a pointer to a KTHREAD
structure this structure is passed into a function that we’ll call RetLibcVerify. RetLibcVerify
indexes KTHREAD’s UniqueThread member at offset 0x1e4. OverflowGuard then checks to
see if the UniqueThread exists in its ProcArray. If the UniqueThread does not exist in the
linked lists OverflowGuard executes the API normally. Otherwise OverflowGuard using the
EPROCESS structure indexes the TEB (Thread Environment Block), then it adds the TEB to
the ProcInfo structure and returns after verifying certain options, befire RetLibcVerify returns
it stores the ProcInfo structure that was identified in a global variable. Next OverflowGuard
checks to see if an OBJECT_ATTRIBUTES structure was defined if one was not, then
OverflowGuard calls the API and returns. Otherwise OverflowGuard calls a function which
29 PsLookupProcessByProcessId (http://www.rootkit.com/newsread_print.php?newsid=139), 6/7/04
30 Solar Designer Ret-Libc (http://www.groar.org/expl/intermediate/ret-libc.txt), 6/7/04
31 KeGetCurrentThread (http://www.osr.com/ddk/kmarch/k105_8fxu.htm), 6/7/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www.osr.com/ddk/kmarch/k105_8fxu.htm
http://www.groar.org/expl/intermediate/ret-libc.txt
http://www.rootkit.com/newsread_print.php?newsid=139

checks the ObjectName in the OBJECT_ATTRIBUTES structure. This check, makes sure that
the Object does not have certain privelleges. Though in disassembly it was un clear which it
checked for. The routine just described is used for NtCreateFile, NtOpenFile,
NtCreateSection. NtProtectVirtualMemory has its own routine. This is described below.

The hooked NtProtectVirtualMemory works differently then the previously mentioned hooks.
Instead of waiting to call the API NtProtectVirtualMemory gets called before any parameters
are verified. OverflowGuard calls NtProtectVirtualMemory, OverflowGuard then calls
KeGetCurrentThread and pass the KTHREAD structure into RetLibcVerify the same function
that the other hooked API’s call. This function is described previously therefore it will not be
described again. OverflowGuard checks to make sure that the global variable that ProcInfo is
stored in is not NULL. OverflowGuard then calls ExGetPreviousMode32 which returns the
mode the processor is in this can be user or kernel mode. OverflowGuard then checks to see
if the current thread is in kernel mode or user mode. If the thread is in kernel mode
OverflowGuard will leave, however if the thread is not in kernel mode and is in user mode
OverflowGuard continues to inspect the call. OverflowGuard next checks the 4th argument
given to NtProtectVirtualMemory which is NewProtect. This argument specifies what
permissions the page will have i.e. PAGE_READWRITE. OverflowGuard does a test on arg4
with the following binary sequence:
10101010

The only test scenarios where NtProtectVirtualMemory will not have its pages modified are
cases where a test instruction will not result in one:

PAGE_NOACCESS
PAGE_GUARD
PAGE_NOCACHE
PAGE_EXECUTE_READ

If one of these flags is specified NtProtectVirtualMemory will return. However if a different
flag is specified OverflowGuard will check to see if the thread calling NtProtectVirtualMemory
is owned by a process that it protects. If OverflowGuard indeed owns the process
OverflowGuard will verify that NtProtectVirtualMemory’s ProtectSize parameter is greater
than 0. OverflowGuard then marks each address that was just allocated as not present. This
is done by looping from the base address of an allocated region and for every page that is
found, the 1st bit in the PTE is changed to 0 to mark the page as not present.

5.3.14 Page Fault Exception

When a page fault occurs OverflowGuard will first checks to make sure the page fault
occurred in user-land and not in kernel space. If the fault was in user-land OverflowGuard
will check to see if the page’s permissions are set to read-only. This is done by translating
the linear fault address to its PTE. Once this is done OverflowGuard checks the 1 bit in the
PTE if it is zero then that page is read-only. If this is the case, OverflowGuard will set the
pages permissions to user-level and remove the read-only flag. This is done by modifying
the 2nd bit in the PTE and making it 1 and then changing the 1st bit in the PTE to 1 as well.
OverflowGuard then manually performs the data walk, forcing the new address that caused
the fault to be stored in the DTLB (Data Translation Lookaside Buffer), next OverflowGuard
resets the permissions except this time, instead of the page being read-only it is marked as
supervisor which will cause any access from anything other than the kernel to cause a page
fault. OverflowGuard does this by changing the 2nd bit of the PTE to zero.
32 ExGetPreviousMode (http://www.osr.com/ddk/kmarch/k102_392q.htm), 6/7/04

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

http://www.osr.com/ddk/kmarch/k102_392q.htm

When the page fault occurs OverflowGuard detects the page is not in supervisor mode
OverflowGuard then performs some routine checks. OverflowGuard checks to make sure
that the fault address is not equal to the old EIP, if this is the case then OverflowGuard will
mark this as an attempt to execute code on a non executable page e.g. stack or heap.
However if the fault is not equal to the old EIP then OverflowGuard decides that it was a data
access and repeats the manual loading of the address into the DTLB as mentioned above.

5.3.15 Debug Exception

When OverflowGuard catches a Debug Exception, the debug exception handler will check if
the page is properly aligned. Then OverflowGuard will check to see if the processor is in
single step mode, this is usually a sign of a debugger attached to the system.
OverflowGuard checks this by looking at the dr6 (debug registered), the dr6 will contain
information on the debug exception. If the 14th bit is set in dr6 the processor is in single step
mode, OverflowGuard will effectively change this by setting the bit to 0 and then continue to
examine the exception. OverflowGuard then goes through the memory of the thread that
caused the violation and resets the permissions on those pages that are referenced by the
thread. This is done to prevent a program from taking over the debugging procedures and
bypassing the page fault routine.

5.3.16 Defeating OverflowGuard

OverflowGuard states on their website “In "Protect Only Selected Services" mode, which is
enabled by default, OverflowGuard only protects services which have been tested to work
properly with OverflowGuard. When "Protect Only Selected Services" is disabled all installed
services are protected.” OverflowGuard says to only protect services. Therefore they offer
no protection to third party applications that do not run as services. This is a major problem
because as the reader knows some of the most popular applications used by users are not
services e.g. IM clients, file sharing, MP3 players etc. So when OverflowGuard was tested
against the Attack Vector Test Platform it failed, the results below illustrate the
ineffectiveness of protecting third party non service applications. These tests were
preformed with ret-libc detection enabled and selected service protection turned off.
OverflowGuard Attack Vector Test Platform Results

A plus symbol (+) indicates that the software successfully protected against the specified
exploitation vector.

Buffer overflow on stack all the way to the target
- Target: Parameter function pointer
- Target: Return address
- Target: Function pointer

Buffer overflow of pointer on stack and then pointing to target
- Target: Parameter function pointer
- Target: Return address
- Target: Function pointer

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

5.4 NGSEC StackDefender 2.0

5.4.1StackDefender Overview

Note: Due to an un-expected update of NGSEC’s StackDefender we were unable to get a full
analysis done by the deadline. An updated section will be released at a later date.

NGSEC cut back considerably on the install files for StackDefender. In the 2.0 version,
StackDefender does not install any *NG.fer files nor does it provide any user level API
hooking.

Instead StackDefender 2.0 offers driver enforced buffer overflow protection. The method
used by StackDefender 2.0 is very different from that used in 1.0. StackDefender 2.0 does
not hook user level API functions such as CreateProcessA or VirtualAlloc. Instead
StackDefender 2.0 acts more like a PaX based protection system. StackDefender 2.0
attempts to prevent the allocation of writeable and readable memory. StackDefender
prevents the allocation of writeable and readable pages by hooking
ZwAllocateVirtualMemory and attempts to prevent the conversion of pages from read-able
to writeable and executable by hooking ZwProtectVirtualMemory. StackDefender also
implements two IDT hooks, one IDT entry hooked is the page fault handler 0x0e, the other
IDT entry hooked is syscall entry 0x2e. StackDefender works in a similar way to
OverflowGuard in that it marks pages either read-only or supervisor. This forces the page
fault and the page fault handler handles the violation. The syscall entry hook makes sure
any process calling a system call has proper memory permissions set.

5.4.2Bypass

StackDefender 2.0 pales in comparison to its previous version 1.10. StackDefender 2.0
doesn’t catch any third party applications though it claims to. StackDefender 2.0 also has a
significant CPU overhead that is noticeable after the first install. Just like OverflowGuard
StackDefender 2.0 does not catch any third party applications. The Attack Vector Test
Platform results are as follows:
StackDefender 2.0 Attack Vector Test Platform Results

A plus symbol (+) indicates that the software successfully protected against the specified
exploitation vector.

Buffer overflow on stack all the way to the target
- Target: Parameter function pointer
- Target: Return address
- Target: Function pointer

Buffer overflow of pointer on stack and then pointing to target
- Target: Parameter function pointer
- Target: Return address
- Target: Function pointer

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

6 Attack Vector Test Platform Results

 Pa
X

St
ac
kG

ua
rd

St
ac
kS

hi
el
d

P
ro
P
ol
ic
e
S
SP

V
is
ua

l S
tu
di
o
.N
E
T

O
ve
rfl
ow

G
ua
rd

St
ac
kD

ef
en
de

r 1
.1
0

St
ac
kD

ef
en
de

r 2
.0

Stack overflow to target
Parameter function pointer + - - + + - + -
Parameter longjmp buffer + - - - N/A N/A N/A N/A

Return address + + + + + - + -
Old base pointer + + + + N/A N/A N/A N/A

Function pointer + - - + + - + -
Longjmp buffer + - - + N/A N/A N/A N/A
Heap/BSS overflow to
target

Function pointer + - - - N/A N/A N/A N/A

Longjmp buffer + - - - N/A N/A N/A N/A

Pointer on stack
Parameter function pointer + - - + + - + -
Parameter longjmp buffer + - - + N/A N/A N/A N/A

Return address + - + + + - + -
Old base pointer + + + + N/A N/A N/A N/A

Function pointer + - - + + - + -
Longjmp buffer + - - + N/A N/A N/A N/A

Pointer on heap/BSS
Return address + - + - N/A N/A N/A N/A

Old base pointer + + + + N/A N/A N/A N/A

Function pointer + - - - N/A N/A N/A N/A

Longjmp buffer + - - - N/A N/A N/A N/A

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

7 Conclusion

Many options are available for users seeking a solution to the widespread exploitation of
buffer overflow vulnerabilities. The test results show that there are varying coverage
capabilities between the different software titles analyzed, and our research has shown that
attackers are still one step ahead with methods available to defeat almost every protection
mechanism available. The combination of kernel and compiler based protection software is
currently the best defense. Compiler protections are able to modify the structure of the
generated binary itself and implement run-time checks, while the kernel is able to protect
the environment in which the program runs and reduce the reliability of exploits which
require hardcoded addresses. Although the currently available solutions may not be perfect,
they are certain to help combat the proliferation of automated exploitation by worms and
amateur attackers.

© 2004 iDEFENSE, Inc. All rights reserved.
Any reproduction of these materials without the express written permission of iDEFENSE, Inc. is prohibited.
Voice 1-877-516-2974 | Fax 703-390-9456

	Abstract
	1 Introduction
	1.1 Scope

	2 Buffer Overflow Protection Technology
	2.1 Kernel Enforced Protection
	2.2 Compiler Enforced Protection

	3 Attack Vector Test Platform
	4 Linux Protection Suites
	4.1 Kernel Enforced Protection
	4.1.1 NOEXEC
	4.1.2 ASLR
	4.1.3 Defeating PaX

	4.2 Compiler Enforced Protection
	4.2.1 StackGuard
	4.2.2 StackShield

	5 Windows 2003 Stack Protection
	5.1 Windows 2003 Stack Protection
	5.1.1 Compiler-based Protection
	5.1.2 How The Protection Works
	5.1.3 Compromising The Protection
	5.1.4 Bypass Windows 2003 Stack Protection

	5.2 NGSEC StackDefender 1.10
	5.2.1 StackDefender Overview
	5.2.2 Brief Description of Kernel System-Call Hooking
	5.2.3 Individual Analysis of files
	5.2.4 StackDefender.sys
	5.2.5 stackdefender_service.exe
	5.2.6 Background NG.fer files
	5.2.7 What ReBasing Is
	5.2.8 kernelNG.fer
	5.2.9 proxydll.dll
	5.2.10 Defeating StackDefender

	5.3 OverflowGuard
	5.3.1 OverflowGuard Overview
	5.3.2 Interrupt Descriptor Table (IDT) and Other Terms
	5.3.3 IDT Description
	5.3.4 Control Registers (cr)/ Debug Registers (dr)
	5.3.5 PaX/OverflowGuard Comparison
	5.3.6 Individual Analysis of Files
	5.3.7 OGCenter.exe & OGConfig.exe
	5.3.8 OGRebase.exe
	5.3.9 OverflowGuard.sys
	5.3.10 Setup Phase
	5.3.11 Setting Memory Permissions
	5.3.12 Catching New Processes
	5.3.13 Ret-Libc Protection
	5.3.14 Page Fault Exception
	5.3.15 Debug Exception
	5.3.16 Defeating OverflowGuard

	5.4 NGSEC StackDefender 2.0
	5.4.1 StackDefender Overview
	5.4.2 Bypass

	6 Attack Vector Test Platform Results
	7 Conclusion

